The Journey To Energy Efficient Temperature Controlled Storage

Rob Lamb, Group Sales & Marketing Director Star Refrigeration

16th June 2020

In business to secure a better future

About Us

- Founded in 1970
- UK's largest independent industrial refrigeration engineering company
- >300 employees
- £50M turnover
- Pioneers in innovative natural refrigeration and heating technology
- Total solutions provider
- UK-wide coverage (and beyond)
- ISO 9001:2015 & 45001 certified

"We are in business to secure a better future by using the best people, systems and technology to deliver quality temperature solutions"

Environmental:

- Need to achieve carbon emission reductions
- Focus on net zero and sustainability
- Energy intensive industry

Financial

- Increasing in energy prices (pre-COVID)
- Energy next highest cost after labour and transport

Asking The Energy Questions

- What is my annual energy bill?
- How does this compare to best practice (and competition)?
- What are my main energy consumers?
- How will increasing energy prices affect profitability?
- What steps can I take to reduce energy consumption

Refrigeration:

- How do I know my refrigeration system is optimised?
- What is the size of saving on offer?
- What is the cost to improve?
- Should I modify or replace?

Total Cost of Ownership

■ installation costs ■ maintenance ■ energy

THE ROAD TO ENERGY EFFICIENT TEMPERATURE CONTROLLED STORAGE

Planning

•

0

- > Minimise heat load in store
- > Site location and layout
- > Product throughput and temperatures
- > Ambient design temperature

•

The Cost Of Air Ingress

1m³/s air ingress =

£13,000/yr Chill £20,000/yr Frozen

- > Minimise heat ingress
- > Building fabric and door configuration
- > Jointing and vapour seals
- > Roof panels

•

•

Refrigeration System Design

- Select a robust solution which is optimised for your site
- > System sizing and functionality
- > Refrigerant choice and defrost methodology
- > Performance enhancing technologies and efficient controls

•

Equipment Selection, Operation & Control

Three Steps to optimum energy efficiency:

- 1. Efficient equipment
- 2. Efficient operation
- 3. Efficient control

Maintenance

•

- > Ensure system longevity and avoid breakdowns
- > Proactive maintenance regime
- > Robust response plan
- > Knowledgeable and capable service partner

•

System Analysis and Monitoring

- > Monitor operation and identify continuous improvement opportunities
- > Assessment of system performance and power consumption
- > Benchmarking
- > Reporting and system feedback

Specific Energy Consumption Benchmarking

USER INPUTS (complete yellow cells)

Company:	Test Company
Site:	London
Installation Year:	2000
Application:	Cold
Store volume (m³):	100000
Energy consumption (kWh/year):	3,050,000
Electricity cost (£/kWh):	0.13
% of stated consumption relating to refrigeration	80%

Specific Energy Consumption Benchmarking

In business to secure a better future

Energy Performance Calculator

System and Controls Optimisation

- > Optimise ongoing performance as your site evolves
- > Setpoint adjustment
- > Compressor sequencing and control
- > Address underperforming equipment

System And Controls Optimisation

- 1. Operating in line with design
- 2. Identification of underperforming equipment
- 3. Set point adjustment
- 4. Improvements to control
- 5. Energy analysis vs ambient/previous
- 6. Justification for CAPEX spend
- 7. Load profile generation

SUMMARY

Implement an Continuous Reduced Engage with an optimisation Benchmark downtime and Assess energy expert Opportunities your store reduction increased and profitability improvement programme

In business to secure a better future

THE ROAD TO ENERGY EFFICIENT TEMPERATURE CONTROLLED STORAGE

Questions?

